Introduction to ORCAN

M. Kellner

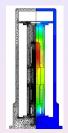
Department of Materials Science 6, University of Erlangen-Nuremberg

ORCAN Workshop, 26. April 2005

Outline

Open Reflective Component Architecture Motivation ORCAN Overview

ORCAN Design


큰

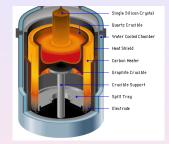
イロト イヨト イヨト イヨト

Software for Simulation of Crystal Growth

Crystal Growth Laboratory

- Development of simulation software since years.
- CrysVUn, STHAMAS/-3D licensed to industry.
- 2D or axisymmetric complex geometries.
- User friendly interface.

Research Project (CrysVUn3D)


- Fully 3D simulation in complex geometries.
- Focus on realistic modelling of thermal radiation.
- Completely new development of simulation software.

Why ORCAN?

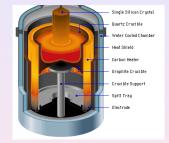
Example (Thermal Radiation)

- Geometry import and management.
- Mesh generation and management.
- Heat conduction simulation.
- Linear equation system solver.
- Coupling between (different) meshes.
- Visualization.
- Graphical user interface.
- Parallelization.

Figure: Czochralski furnace.

• • • • • • • • • • • •

Drawback


A good deal of the time must be spend in preparation for the real task.

Why ORCAN?

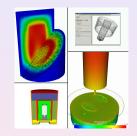
Example (Thermal Radiation)

- Geometry import and management.
- Mesh generation and management.
- Heat conduction simulation.
- Linear equation system solver.
- Coupling between (different) meshes.
- Visualization.
- Graphical user interface.
- Parallelization.

Figure: Czochralski furnace.

< D > < A >

Drawback


A good deal of the time must be spend in preparation for the real task.

Why ORCAN?

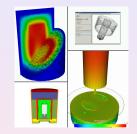
Example (Large-Scale Software)

- Not all can be developed anew.
- Reuse of existing software packages.
- Integration of a specific product is critical.
- Highly interwoven application modules.
- Increasing efforts on modifications.
- Replacements more and more expensive.

Figure: CrysVUn3D.

• □ ▶ • • □ ▶ • • □ ▶

Drawback


Large application may fail if they reach a specific level of complexity.

Why ORCAN?

Example (Large-Scale Software)

- Not all can be developed anew.
- Reuse of existing software packages.
- Integration of a specific product is critical.
- Highly interwoven application modules.
- Increasing efforts on modifications.
- Replacements more and more expensive.

Figure: CrysVUn3D.

Drawback

Large application may fail if they reach a specific level of complexity.

Goals

We are looking for a framework which

- allows the decomposition of software in manageable modules.
 ⇒ components
- allows a clear functional specification of a module.
 ⇒ interfaces
- forces the developer to use the specification of a module.
 ⇒ data hiding
- allows replacement of a module with a minimum of effort.
 ⇒ 3rd party products
- allows easy extension of the software by new modules.
 ⇒ plug-in mechanism

Goals

We are looking for a framework which

- allows the decomposition of software in manageable modules.
 ⇒ components
- allows a clear functional specification of a module.
 ⇒ interfaces
- forces the developer to use the specification of a module.
 ⇒ data hiding
- allows replacement of a module with a minimum of effort.
 ⇒ 3rd party products
- allows easy extension of the software by new modules.
 ⇒ plug-in mechanism

Idea

void * module; string name;

Idea

void * module;

string name;

Idea

void * module; string name;

Idea

void * module;

string **name**;

void * module;

string name;

Methods

Representative

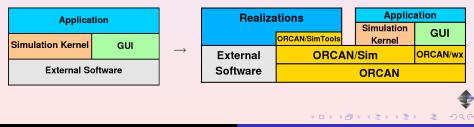
Components with Interfaces and a

PropertyMap

큰

<ロ> <同> <同> < 同> < 同> < 同> < 同> <

Outline



What is ORCAN?

Traits

- Collection of C++ libraries.
- Self contained.
- Middleware: Service between application modules.
- Decomposition of software complexity.

ORCAN

Specification

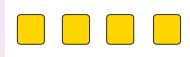
- Component model (Placeholder for implementation)
- Interfaces
- Load implementation on demand

Application

《口》《聞》《臣》《臣》

Realiza	tions	Applic	ation
	ORCAN/SimTools	Simulation	GUI
External	ORCAN	Kernel I/Sim	ORCAN/wx
Software		ORCAN	

ORCAN


Specification

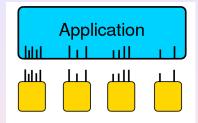
 Component model (Placeholder for implementation)

Interfaces

Load implementation on demand

Application

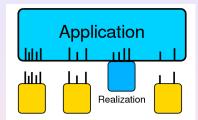
< ロ > < 同 > < 回 > < 回 > < 回 > <


Realizations			Applic	ation
	ORCAN/SimTools		Simulation	GUI
			Kernel	
External	ORCA	۱N	/Sim	ORCAN/wx
Software			ORCAN	

ORCAN

Specification

- Component model (Placeholder for implementation)
- Interfaces
- Load implementation on demand


< ロ > < 同 > < 回 > < 回 > < 回 > <

Realiza	tions		Applic	ation
	ORCAN/SimTools		Simulation Kernel	GUI
External	ORCAN/Sim		ORCAN/wx	
Software			ORCAN	

ORCAN

Specification

- Component model (Placeholder for implementation)
- Interfaces
- Load implementation on demand

< ロ > < 同 > < 回 > < 回 > < 回 > <

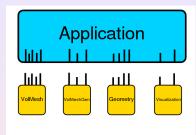
Realizations			Application	
	ORCAN/SimTools		Simulation Kernel	GUI
External	Reffici		ORCAN/wx	
Software			ORCAN	

ORCAN/Sim

Motivation ORCAN Overview ORCAN Design

Specification

- Based on ORCAN.
- Simulation related components.


Example

VolMesh

VolMeshGen

Geometry

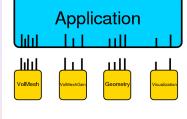
Visualization

< ロ > < 同 > < 回 > < 回 > < 回 > <

Realiza	ations		Application	
			Simulation	GUI
	ORCAN/SimTools		Kernel	5
External	ORCA	N/	/Sim	ORCAN/wx
Software			ORCAN	

ORCAN/Sim

Motivation ORCAN Overview ORCAN Design


Specification

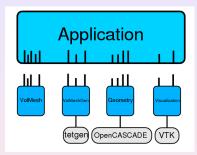
- Based on ORCAN.
- Simulation related components.

ORCAN/SimTools

- Based on ORCAN/Sim.
- Collection of useful tools.

Realizations		Application		
		- [Simulation	GUI
	ORCAN/SimTools		Kernel	GUI
External	ORCA	N/	Sim	ORCAN/wx
Software			ORCAN	

< < >> < <</>


A B > A B >

Realizations

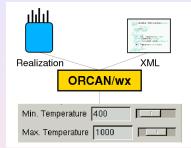
Specification

- Based on ORCAN/Sim.
- Implementation of components.
- Not all interfaces necessary.
- May use external software.
- Loaded on demand.

• Exchangeable, even at runtime.

글 > < 글 >

Realizations			Application	
			Simulation	GUI
	ORCAN/SimTools		Kernel	GUI
External	ORCAN/Sim		ORCAN/wx	
Software	ORCAN			


Motivation

ORCAN Overview ORCAN Design

ORCAN/wx

Specification

- Based on ORCAN.
- Automatic GUI generation.
- Display parameters of realization.
- XML description of GUI.
- Based on *wxWidgets*.

< < >> < <</>

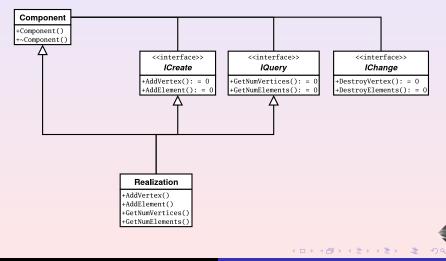
A B > A B >

Realizations			Application	
		- [Simulation	GUI
	ORCAN/SimTools		Kernel	GOI
External	ORCAN/Sim ORCAN		ORCAN/wx	
Software				

Motivation

ORCAN Overview

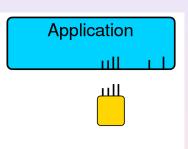
Outline



- Motivation
- ORCAN Overview
- ORCAN Design

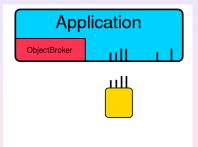
큰

<ロ> <同> <同> < 同> < 同> 、< 同> 、<


Component, Interfaces, Realization

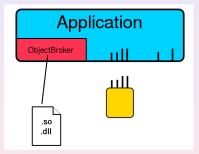
Object Creation Process

ObjectBroker


- Application needs new instance. VolMesh::New()
- Calls ObjectBroker internally.
- Load appropriated library file.
- Instantiates realization.
- Returns reference to application.
 VolMeshRef

Object Creation Process

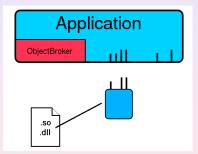
ObjectBroker


- Application needs new instance. VolMesh::New()
- Calls ObjectBroker internally.
- Load appropriated library file
- Instantiates realization.
- Returns reference to application.
 VolMeshRef

Object Creation Process

ObjectBroker

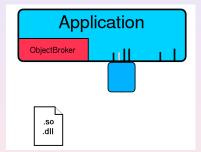
- Application needs new instance. VolMesh::New()
- Calls ObjectBroker internally.
- Load appropriated library file. ٩



Object Creation Process

ObjectBroker

- Application needs new instance. VolMesh::New()
- Calls ObjectBroker internally.
- Load appropriated library file.
- Instantiates realization. ٩



Object Creation Process

ObjectBroker

- Application needs new instance. VolMesh::New()
- Calls ObjectBroker internally.
- Load appropriated library file.
- Instantiates realization. ٢
- Returns reference to application. VolMeshRef

< < >> < <</>

- ₹ 🖬 🕨

Object Reference

- Access point to realization.
- Query and usage of component interfaces.
- Destroy of realization.

Example (Query interface)

Component with query interface IQuery:

```
VolMeshRef ref = VolMesh::New();
if( ref && ref.I.QueryPtr ) {
  int num = ref.I.QueryPtr->GetNumVertices();
}
ref.Delete();
```

Reflectivity

Problem

Realizations of the same component may have different parameters.

Example (VolMeshGen)

• Gmsh float characteristic_length; float max_element_size;

Tetgen

float global_max_volume;

float min_angle;

Reflectivity support

Ability to query a component for its intrinsic parameters at runtime.

< ロ > < 同 > < 三 > < 三 > 、

Reflectivity

Problem

Realizations of the same component may have different parameters.

Example (VolMeshGen)

• Gmsh float characteristic_length; float max_element_size;

Tetgen

float global_max_volume;

float min_angle;

Reflectivity support

Ability to query a component for its intrinsic parameters at runtime.

PropertyMap

A parameter of a realization is encapsulated in a property.

A property consists of a key/value pair:

string <name>, type <value>

Example			
	"MinAngle" "MaxVolume" "SubdivideBdry"	(float) 15.3 (float) 0.12 (bool) true	

- All properties are stored in a map: PropertyMap
- The property map can be queried by HasProperty() GetProperty()

< < >> < <</>

ORCAN/Sim Components for Simulation

