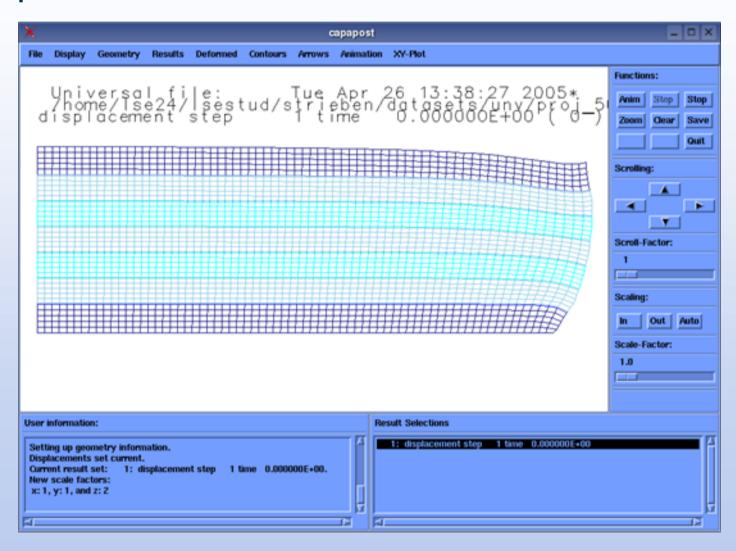
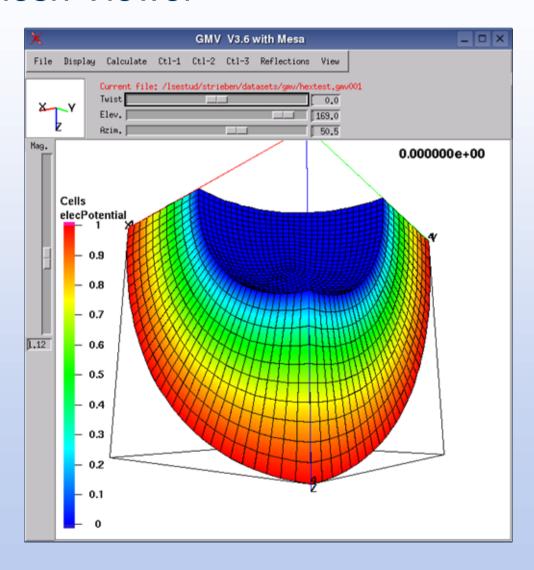
LSE CFSPP

An ORCAN based application for sensor technology.

Simon Triebenbacher on April 27th 2005

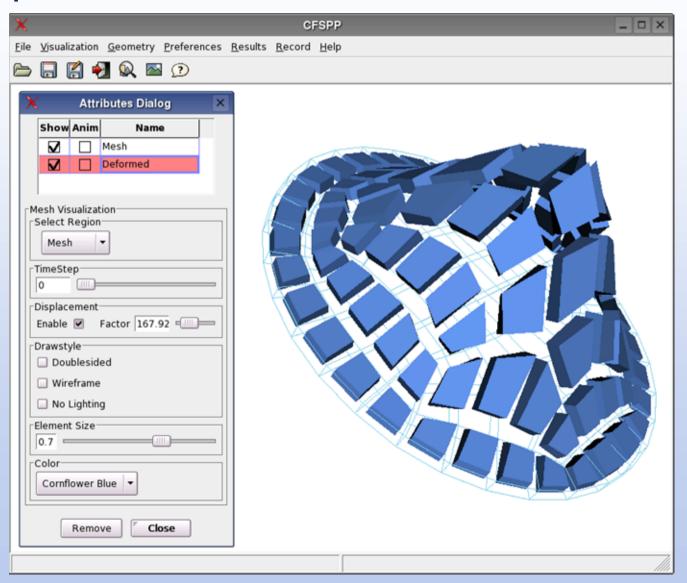

- 1. Intended use of CFSPP at LSE
 - 2. Requirements for CFSPP
 - 3. The architecture of CFSPP
- 4. Implemented features and future enhancements

1. Intended use of CFSPP at LSE


CFSP(ost)P(rocessor) is intended

- as a tool for visualization (most important features: isocontours or scalar mapping on deformed grids, vector glyphs)
- as a replacement for existing programs (Capapost & GMV)
- for the everyday use in the simulation and visualization cycle in combination with CFS++ (Coupled Field System in C++)
- as a learning tool in the practical excercises for the two courses Computer Aided Engineering of Sensors and Actuators (CAE) and Numerical Simulation of Electromechanical Transducers (NSEMT)

Capapost



General Mesh Viewer

Screenshots

CFSPP

1. Intended use of CFSPP at LSE

Disadvantages of the existing programs:

- 1. Capapost
- uses deprecated libraries
- does not support 3D geometries
- user interaction not intuitive
- does only support view of deformed mesh but not fields on the mesh
- 2. General Mesh Viewer
- does indeed include support for 3D geometries but lacks support for deformed grids
- complex user interface

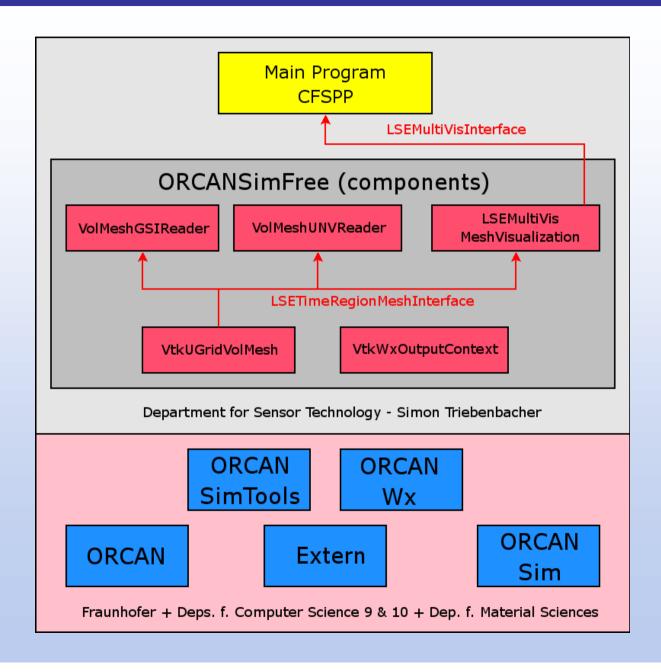
1. Intended use of CFSPP at LSE

Some preliminary developments that influenced CFSPP

- it was initially intended to use the library gridlib should for visualization
- in the course of my bachelor thesis a socket interface for incremental transfer of simulation results between CFS++ and gridlib has been developed (Gridlib Socket Interface)
- this interface served as a basis of our binary file format GSI
- but: the further development of gridlib was cancelled because of it's complexity
- thus the choice was made for ORCAN which is developed in the same SFB

- CFSPP should be a tool for visualization and <u>not</u> simulation
- as little overhead as possible should be introduced by components specialized for other purposes
- the component VtkUGridVolMesh was kindly provided by the ORCAN Team. VtkUGridVolMesh just wraps a VtkUnstructured Grid in an ORCAN VolMesh component

 it should be possible to visualize results for certain predefined parts, so called regions, of the grid


→ the grid has to be subdivided according to some element attribute.

 many different visualizations should be manageable and viewable in a scene

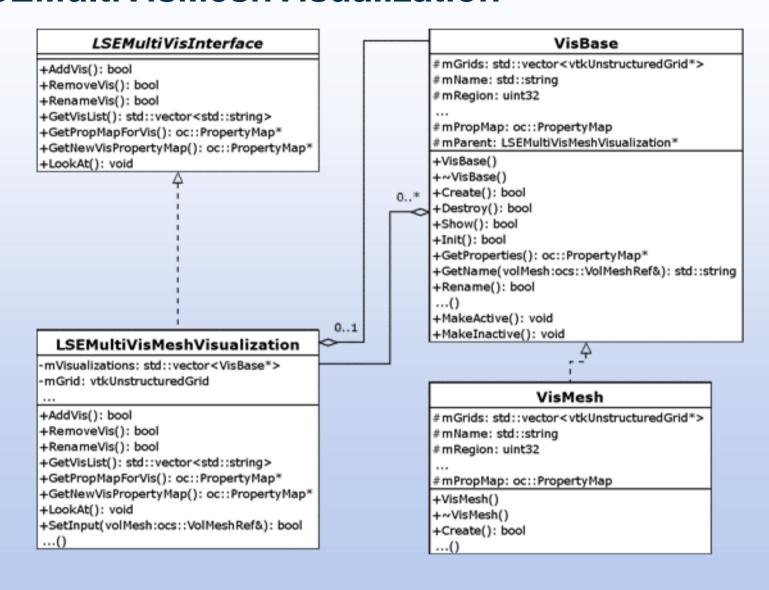
→ a special interface LSEMultiVisInterface has been developed for adding, renaming, deleting visualizations. It also includes functions like positioning the camera and so on.

- visualization of results on deformed geometries.
- readers for our two most important data formats UNV (IDEAS universal file) and GSI (Gridlib Socket Interface)
- reader for the XML simulation description files for additional infos

- support for time dependent results.
- disadvantage of standard ORCAN interfaces: only support for results on elements, nodes or faces.
- 200 result data sets (one for each timestep) on a grid but just a single result type!
- → development of the grid interface LSETimeRegionMeshInterface. The readers feed the interface with infos about timesteps and the visualization can use these infos

VtkUGridVolMesh

- the component implements most standard ORCAN interfaces plus a new one:
- LSETimeRegionMeshInterface provides functions for:
- setting and getting infos about some special attributes (region and displacement)
- setting and getting infos about normal attributes:
- hierarchy: mesh → attribute → region → timesteps


LSET imeRegionMeshInterface

- +GetRegionAttrName:std::string
- +SetRegionAttrName:void
- +GetRegions:void
- +SetRegions:void
- +GetRegionNames:void
- +SetRegionNames:void
- +GetAttrList:void
- +SetAttrList:void
- +GetAttrRegions:void
- +SetAttrRegions:void
- +GetAttrTimeStepInfos:void
- +GetAttrTimeStepNumbers:void
- +GetAttrTimeSteps:void
- +GetAttrGridLabels:void
- +GetAttrScalarMinimums:void
- +GetAttrScalarMaximums:void
- +GetAttrScalarMinimum:real64
- +GetAttrScalarMaximum:real64
- +SetAttrTimeStepInfos:void
- +GetDisplacementAttrName:std::string
- +SetDisplacementAttrName:void

LSEMultiVisMeshVisualization

- uses the LSETimeRegionInterface to query the VolMesh for infos about the attributes
- has a vector of visualizations (derived from class VisBase)
- has a pointer to a vtkUnstructuredGrid which is initialized from a VolMesh when the main program calls SetInput()
- defines a new Interface LSEMultiVisInterface, which can be used by the main program to interact with the visualization

LSEMultiVisMeshVisualization

Main Program

- provides the main user interface and functions for viewing help and managing global preferences
- has functions to load datasets and pass the resulting VolMesh to the visualization component
- can add, rename or delete visualizations via the LSEMultiVisInterface
- provides dialog templates into which the property maps of the visualizations are mapped via the automatic GUI generation mechanism

4. Impl. feat. & future enhancements

Implemented Features

- mesh visualization for deformed geometries and selected regions
- scalar mapping for deformed geometries and selected regions
- LSETimeRegionMeshInterface for generic access to time-/frequency dependent data on grid
- GSI and enhanced UNV Readers with support for the new grid Interface
- LSEMultiVisInterface for the management of multiple visualizations

4. Impl. feat. & future enhancements

Additional features of special interest to LSE

- support for animations of time-/frequency dependant data
- more visualization types → maybe transition to the new visualization component of the ORCAN team
- a reader for our brand new XML result data format is being developed at the moment as part of a bachelor thesis
- a major new feature would be the support of adaptive grids. CFS++ does support it whereas ORCAN does not provide this feature (at the moment!)

Thank you for your attention!